Math 33A Worksheet Week 6 Solutions

TA: Emil Geisler and Caleb Partin

May 9, 2024

Exercise 1. Let $A : \mathbb{R}^4 \to \mathbb{R}^2$ be the linear transformation given by the matrix $\begin{bmatrix} 1 & 2 & -1 & 3 \\ 2 & 4 & -2 & 6 \end{bmatrix}$. Find a basis for ker A. Find a basis for ImA. Notice that dim ker $A + \dim \operatorname{Im} A = 4$.

RREF:

$$\begin{bmatrix} 1 & 2 & -1 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

so solutions to Ax = 0 are given by $x_1 = -2x_2 + x_3 - 3x_4$, x_2, x_3, x_4 free. So a basis for ker A is given by

	$\left[-2\right]$		[1]		-3	
ſ	1		0		0	
Í	0	,	1	,	0	
`	0		0		1	,

Since only first column has a leading one in RREF, the first column $\begin{vmatrix} 1 \\ 2 \end{vmatrix}$ forms a basis for ImA.

Exercise 2. True or false: Explain your reasoning or find an example or counterexample.

- (a) If V is a subspace of \mathbb{R}^3 that does not contain any of the elementary column vectors e_1, e_2, e_3 , then $V = {\vec{0}}$.
- (b) If v_1, v_2, v_3, v_4 are linearly independent vectors, then v_1, v_2, v_3 are linearly independent.
- (c) If v_1, v_2, v_3 are linearly independent vectors, then v_1, v_2, v_3, v_4 are linearly independent.
- (d) It is possible for a 4×4 matrix A to have ker $A = \operatorname{span} \left\langle \right\rangle$

$$\operatorname{tix} A \text{ to have } \ker A = \operatorname{span} \left\langle \begin{bmatrix} 1\\0\\0\\-1 \end{bmatrix}, \begin{bmatrix} 2\\3\\0\\0 \end{bmatrix} \right\rangle$$

 \rangle and

$$\mathrm{Im}A = \mathrm{span} \left\langle \begin{bmatrix} 1\\0\\0\\3 \end{bmatrix}, \begin{bmatrix} 0\\0\\4\\2 \end{bmatrix}, \begin{bmatrix} 0\\2\\3\\-1 \end{bmatrix} \right\rangle$$

(e) There exists a 4×4 matrix A with ker $A = \operatorname{span}\langle e_1, e_2, e_3 \rangle$ and $\operatorname{Im} A = \operatorname{span}\langle e_3 + e_4 \rangle$

(f) There exists a 5×5 matrix A with ker A = ImA.

(g) There exists a 4×4 matrix A with ker A = ImA.

- (a) This is false. For instance, $V = \operatorname{span} \left\langle \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} \right\rangle$ is not the zero subspace but doesn't contain any of e_1, e_2, e_3 .
- (b) This is true. Since v_1, v_2, v_3, v_4 are linearly independent, the only solution (x_1, x_2, x_3, x_4) to $x_1v_1+x_2v_2+x_3v_3+x_4v_4 = \vec{0}$ is (0, 0, 0, 0). Therefore, the only solution to $x_1v_1+x_2v_2+x_3v_3 = \vec{0}$ is (0, 0, 0), so v_1, v_2, v_3 are linearly independent.
- (c) This is false. For instance, let $v_1 = e_1, v_2 = e_2, v_3 = e_3$ in \mathbb{R}^3 , and let v_4 be any vector in \mathbb{R}^3 .
- (d) False. Suppose A was a matrix satisfying the conditions. Notice that the two vectors spanning ker A are linearly independent, so dim ker A = 2. Similarly, we show by RREF or inspection that the three vectors spanning ImA are linearly independent, so dim ImA = 3. So dim ker $A + \dim \text{Im} A = 5$, but this contradicts the rank-nullity theorem, so no such matrix A exists.
- (e) Yes. Notice that in this case dim ker $A + \dim \operatorname{Im} A = 3 + 1 = 4$, so there is no issue from rank nullity. Since $e_1, e_2, e_3 \in \ker A$, the first three columns of A must be zero, and so we find the following example:

- (f) False. A 5×5 matrix must have dim ker $A + \dim \text{Im}A = 5$ by rank-nullity, and since 5 is not an even number, we cannot have dim ker $A = \dim \text{Im}A$.
- (g) True. Notice that by rank nullity, we must have dim ker $A = \dim \operatorname{Im} A = 2$, so suppose A is a 4×4 matrix with ker $A = \operatorname{span}\langle e_1, e_2 \rangle$. This implies its first two columns are the zero vector. In order for the image of A to also be $\operatorname{span}\langle e_1, e_2 \rangle$, the last two columns must span $\operatorname{span}\langle e_1, e_2 \rangle$, so the following matrix works:

$$\begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Exercise 3. Let $A : \mathbb{R}^8 \to \mathbb{R}^7$ be given by the following matrix:

Determine dim ker A (hint: use rank-nullity and find dim ImA).

Im A is two dimensional by observation or by noticing that the row reduced echelon form has exactly two leading ones. Therefore, since dim ker $A + \dim \operatorname{im} A = 8$ and dim im A = 2, dim ker A = 6.

Exercise 4. Find a basis for the following subspaces of \mathbb{R}^3 :

(a)
$$V = \operatorname{span}\left(\begin{bmatrix}3\\-1\\2\end{bmatrix}, \begin{bmatrix}1\\0\\1\end{bmatrix}, \begin{bmatrix}2\\-1\\1\end{bmatrix}, \begin{bmatrix}0\\1\\-4\end{bmatrix}\right)$$

(b) $V = \left\{\begin{bmatrix}v_1\\v_2\\v_3\end{bmatrix} \mid v_1 - 3v_2 = 0\right\}$

- (c) Let $A : \mathbb{R}^3 \to \mathbb{R}^3$ be any linear transformation such that dim ker A = 0. Find a basis for V = ImA.
- (a) $V = \operatorname{im} A$ for $A = \begin{bmatrix} 3 & 1 & 2 & 0 \\ -1 & 0 & -1 & 1 \\ 2 & 1 & 1 & -4 \end{bmatrix}$. RREF of A has leading ones in 1,2, and 4th column, so the first, second, and fourth of these vectors form a basis for V.
- (b) Notice that $V = \ker A$ for $A = \begin{bmatrix} 1 & -3 & 0 \end{bmatrix}$. A is already row reduced, so writing the solutions to $A\vec{x} = \vec{0}$, we find that $\vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$ must satisfy $x_1 - 3x_2 = 0 \iff x_1 = 3x_2$

Since only the first column of (the row reduced echelon form) of A has a leading one, x_2, x_3 are free, so

$$\ker A = \left\{ \begin{bmatrix} 3x_2\\x_2\\x_3 \end{bmatrix} \mid x_2, x_3 \in \mathbb{R} \right\} = \left\{ x_2 \begin{bmatrix} 3\\1\\0 \end{bmatrix} + x_3 \begin{bmatrix} 0\\0\\1 \end{bmatrix} \mid x_2, x_3 \in \mathbb{R} \right\} = \operatorname{span} \left\langle \begin{bmatrix} 3\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix} \right\rangle$$

so a basis for ker A is $\left\{ \begin{bmatrix} 3\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix} \right\}$

(c) Since dim ker A = 0, by rank nullity, dim ImA = 3. Therefore, since dim ImA = 3 and is a subspace of \mathbb{R}^3 , Im $A = \mathbb{R}^3$. Thus, a basis for A is $\begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix}$.

Exercise 5. For what values of $\lambda \in \mathbb{R}$ are the following pairs of vectors orthogonal?

- (a) $\begin{bmatrix} \lambda \\ 3 \end{bmatrix}, \begin{bmatrix} -2 \\ 1 \end{bmatrix}$ (b) $\begin{bmatrix} \lambda \\ 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ -1 \\ -\lambda \end{bmatrix}$ (c) $\begin{bmatrix} 1 \\ \lambda \end{bmatrix}, \begin{bmatrix} \lambda \\ 1 \end{bmatrix}$
- (a) Orthogonal if and only if $-2\lambda + 3 = 0$, so orthogonal when $\lambda = 3/2$ and not otherwise.
- (b) The dot product between these two vectors is 0, so orthogonal regardless of λ .
- (c) Orthogonal if and only if $\lambda + \lambda = 0$, so only orthogonal when $\lambda = 0$.

Exercise 6. Consider two subspaces V and W of \mathbb{R}^n , where V is contained in W, denoted $V \subseteq W$.

- (a) Show that $\dim(V) \leq \dim(W)$.
- (b) Show that if $\dim(V) = \dim(W)$, then V = W.
- (a) Let $\mathscr{B} = \{v_1, v_2, \ldots, v_k\}$ be a basis for V. Since $V \subset W$, each of the vectors v_1, v_2, \ldots, v_k are in W, and thus \mathscr{B} is a linearly independent subset of W. Therefore, we can choose vectors $v_{k+1}, \ldots, v_l \in W$ such that $\{v_1, v_2, \ldots, v_k, v_{k+1}, \ldots, v_l\}$ forms a basis for W, so dim $W = l \ge k = \dim V$.
- (b) Let $\mathscr{B} = \{v_1, v_2, \ldots, v_k\}$ be a basis for V and since $V \subset W$, each of the vectors v_1, \ldots, v_k are in W, so \mathscr{B} is a linearly independent subset of W. Since dim $W = \dim V = k$ by assumption, \mathscr{B} is thus a basis for V (see Thereom 3.3.4 in Bretscher).